

Reg. No. :

Name :

**III Semester M.Sc. Degree (C.B.C.S.S. – OBE – Reg./Supple./Imp.)
Examination, October 2025
(2023 Admission Onwards)**

**MATHEMATICS/MATHEMATICS (MULTIVARIATE CALCULUS AND
MATHEMATICAL ANALYSIS, MODELLING AND SIMULATION,
FINANCIAL RISK MANAGEMENT)
MSMAT03C13/MSMAF03C13 : Differential Geometry**

Time : 3 Hours

Max. Marks : 80

PART – A

Answer **any 5** questions from the following 6 questions. **Each** question carries 4 marks.

1. Define the Gradient Vector field. Find the gradient vector field of the function $f(x_1, x_2) = x_1 - 3x_2^2$, $x_1, x_2 \in \mathbb{R}$.
2. Sketch the graph of the function $f: \mathbb{R}^2 \rightarrow \mathbb{R}$ defined by $f(x_1, x_2) = x_1^2 - x_2^2$.
3. Prove or disprove the following : the geodesics have constant speed.
4. Compute $\nabla_v f$ where $f(x_1, x_2) = 2x_1^2 + x_1x_2^2$, $v = (1, 0, 1, -2)$.
5. Define the following terms :
i) Normal curvature of a surface ii) Principle curvature of a surface.
6. With usual notations, prove that $d(f + g) = df + dg$.

(5×4=20)

PART – B

Answer **any 3** questions from the following 5 questions. **Each** question carries 7 marks.

7. Show that the unit n sphere is an n surface in \mathbb{R}^{n+1} .
8. Sketch the level set $f^{-1}(c)$ for $n = 2$ of the function $f(x_1, x_2, \dots, x_{n+1}) = x_1^2 + x_2^2 + x_3^2 + \dots - x_{n+1}^2$ at $c = -1, 0, 1$.

P.T.O.

9. Let S denote the cylinder $x_1^2 + x_2^2 = 1$ in \mathbb{R}^3 . Show that α is a geodesic of S if and only if α is of the form $\alpha(t) = (\cos(at + b), \sin(at + b), ct + d)$ for some $a, b, c, d \in \mathbb{R}$.

10. Prove that the Weingarten map is self-adjoint.

11. Compute $\int_C (-x_2 dx_1 + x_1 dx_2)$, where C is the ellipse $(x_1^2/a^2) + (y^2/b^2) = 1$ oriented by its inward normal. $(3 \times 7 = 21)$

PART – C

Answer **any 3** questions from the following 5 questions. **Each** question carries **13** marks.

12. a) Find the integral curve through $(1, 0)$ of the vector field $X(x_1, x_2) = (x_1, x_2, x_2, x_1)$.
 b) State and prove the Lagrange Multiplier Theorem.

13. Prove the following : Let S be a compact connected oriented n –surface in \mathbb{R}^{n+1} exhibited as a level set $f^{-1}(c)$ of a smooth function $f : \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ with $\nabla f(p) \neq 0$ for all $p \in S$. Then the Gauss map maps S onto the unit sphere S^n .

14. a) Prove the following : Let S be an n surface in \mathbb{R}^3 and $\alpha : I \rightarrow S$ be a geodesic in S with $\dot{\alpha} \neq 0$. Then a vector field X tangent to S along α is parallel along α if and only if both $\|X\|$ and the angle between X and $\dot{\alpha}$ are constant along α .
 b) Show that in an n –plane, parallel transport is path independent.

15. a) Let $g : I \rightarrow \mathbb{R}$ be a smooth function and let C denote the graph of g . Show that the curvature of C at the point $(t, g(t))$ is $g''(t)/(1 + (g'(t))^2)^{3/2}$, for an appropriate choice of orientation.
 b) Prove the following : Let η be the 1–form on $\mathbb{R}^2 - \{0\}$ defined by

$$\eta = -\frac{x_2}{x_1^2 + x_2^2} dx_1 + \frac{x_1}{x_1^2 + x_2^2} dx_2.$$
 Then for $\alpha : [a, b] \rightarrow \mathbb{R}^2 - \{0\}$ be any closed piece wise smooth parametrized curve in $\mathbb{R}^2 - \{0\}$, $\int_{\alpha} \eta = 2\pi k$.

16. a) Find the Gaussian curvature of the ellipsoid $x_1^2/a^2 + x_2^2/b^2 + x_3^2/c^2 = 1$ oriented by its inward normal.
 b) Let $\phi : U_1 \rightarrow U_2$ and $\psi : U_2 \rightarrow \mathbb{R}^k$ be smooth, where $U_1 \subset \mathbb{R}^n$ and $U_2 \subset \mathbb{R}^m$. Verify that $d(\psi \circ \phi) = d\psi \circ d\phi$. $(3 \times 13 = 39)$